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ABSTRACT

We propose a novel wildfire detection algorithm for multi-
spectral satellite images. By observing that wildfire pixels are
sparse outliers residing in a spatially correlated background,
we isolate them using robust principal component analysis. A
novel cloud masking approach based on T-point thresholding
is also proposed to reduce false alarms. Compared to exist-
ing methods, our proposed method adapts to the spatial and
temporal heterogeneity of satellite images, does not require
training on labeled images, and is computationally efficient
for online monitoring. We present an application of our pro-
posed algorithm to the GOES-R imagery in monitoring recent
California wildfires.

Index Terms— Unsupervised learning, RPCA, wildfire
detection, multispectral imagery, image thresholding

1. INTRODUCTION

Uncontrolled wildfires can bring irreversible damage to both
human communities and the environment. At a local scale,
they pose serious threats to valuable assets and human safety;
at a global scale, they precede emission of greenhouse gas
and particles that negatively impact Earth’s climate and pub-
lic health. Despite various efforts, prevention of unexpected
wildfires remains infeasible. Thus, detection and monitoring
of wildfires have become paramount objectives in minimiz-
ing the economic and environmental costs. Early detection of
wildfires ensures that suppression personnel can arrive on the
scene timely, whereas real-time monitoring provides valuable
information on the status change of active wildfires.

Current notification of active wildfires still relies heavily
on human spotter reports whose effectiveness are limited to
daytime wildfires in populated areas. To overcome these lim-
itations, remote detection of wildfires using satellite imagery
has been considered [1]. Most of the existing methods use
Earth-orbiting satellite imagery for its high spatial resolution,
but its low temporal resolution renders continuous monitor-
ing of a wildfire impossible. Geostationary satellite imagery,
although suitable for monitoring task, received little attention
because its spatial resolution was considered too coarse to be

useful. In recent years, the spatial resolution of geostation-
ary satellite imagery has increased significantly. The Geosta-
tionary Operational Environmental Satellites (GOES)-16 [2],
launched in 2017, is one of the newest weather satellites op-
erated by NASA and the National Oceanic and Atmospheric
Administration (NOAA) to provide high frequency Earth im-
agery and atmospheric measurements. It scans the continen-
tal U.S. (CONUS) every 5 minutes through 16 spectral bands
covering visible and infrared wavelengths. The 2 km spatial
resolution and high temporal resolution of GOES-16 imagery
makes it suitable for detecting wildfires online.

Detecting wildfire using a satellite image is equivalent to
classifying each pixel on the image as either non-fire or fire.
The 3.9 µm band on GOES-16 in sensitive to subpixel heat,
but detection based on 3.9 µm band only results in an overly
sensitive algorithm that misclassifies warm background and
reflective objects (e.g. cloud) as fire. To remedy, one can use
both 3.9 µm and 12.3 µm bands of which the latter senses the
actual near-ground temperature. A fire pixel can be identi-
fied by observing a significant and steady difference between
brightness temperatures (BT) measured at these two bands.

A limited number of work on detecting wildfire based on
GOES imagery has been proposed. The reference [3] uses
fixed and contextually varying thresholding mechanisms on
combinations of infrared bands to mask out cloud and de-
tect fire pixels based on GOES-11/12 imagery. Its method
requires setting a large number of threshold values which of-
ten need to be separately optimized for different scenarios;
studies have also shown that its algorithm greedily focuses
on recall rate and suffers from high false alarm rates. The
reference [4] builds a deep convolutional neural net that uti-
lizes spatial and spectral dependency structure of GOES-16
imagery to detect wildfire at pixel level, but does not explic-
itly mask out clouds and requires training over a large sample
of labeled images. To date, an unsupervised online algorithm
that simultaneously masks out cloud and detects wildfire pix-
els remains missing.

In this paper, a novel method to detect wildfires online
based on GOES-16 imagery is introduced. Our detection
is primarily based on BT difference between 3.9 µm and
12.3 µm bands. By observing that wildfire pixels are sparse
outliers and background pixels are spatially correlated, we



propose to decompose the infrared image matrix, whose
entries contain pixel-level BT differences, into low-rank and
sparse components using robust principal component analysis
(RPCA). To reduce false alarms due to cloud pixels, we also
propose a novel cloud masking approach using histogram-
based thresholding. Compared to existing methods, our algo-
rithm is not optimized for individual scenario and is robust to
variation in global environment. Our algorithm is also fully
unsupervised and can perform online detection from a cold-
start. Our experimental results on recent California wildfires
show that our algorithm achieves timely detection with low
false alarm rate.

2. METHODS

For an m by n GOES-16 image, let Y denote the data ma-
trix containing BT difference between 3.9 µm and 12.3 µm
bands. Potential wildfire pixels are outliers because of their
intense response in BT difference, whereas background pixels
are spatially correlated since adjacent pixels describe similar
characteristics. Therefore, we can assume Y is the super-
position of a sparse matrix S that contains potential wildfire
pixels and a low-rank matrix L that contains the background
pixels; i.e., Y = L + S (see Fig. 1 for an illustration). Un-
der this assumption, identifying wildfire pixels in Y is equiv-
alent to classifying nonzero entries in S. Analogously, let
Yt, t = 1, 2, ... be the constructed data matrices for a stream
of GOES-16 images. Then wildfire monitoring is equivalent
to classifying nonzero entries in the corresponding sequence
of sparse components St, t = 1, 2, ....

2.1. Robust Principle Component Analysis

The sparse component S can be recovered by RPCA [5]
through a two-objective optimization problem,

min
L,S
‖L‖∗ + λ‖S‖1 s.t.Y = L + S (1)

where ‖L‖∗ is the sum of eigenvalues
∑

i σi(L), and ‖S‖1 is
the `1-norm. The penalty coefficient λ controls the sparsity
of S. It has been proved that under surprisingly broad condi-
tions, the choice of penalty coefficient λ = 1√

max(m,n)
can

exactly recover the low-rank and sparse components [5].

2.2. Cloud Masking Using T-point Thresholding

The potential wildfire pixels in S often contain cloud pixels
which are also characterized by high BT differences. To en-
sure our algorithm does not misclassify cloud as wildfire, we
propose to identify a pixel in S as a cloud pixdel if its radiance
at the 12.3 µm band, R12.3, is significantly low. Water va-
por absorbs atmospheric energy at 12.3 µm, therefore clouds
are significantly cooler than the background in the 12.3 µm
band. However, what qualifies as “significantly low” does
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Fig. 1: Decomposition of a BT difference image into low-rank and sparse
components. (a) The original image. (b) The low-rank component containing
spatially correlated background pixels. (c) The sparse component containing
potential wildfire pixels.

not have a straightforward criterion, since patterns of cloud
can vary dramatically across different scenarios. Therefore, a
cloud masking mechanism that accounts for spatial and tem-
poral variations should be employed. Consider the histogram
of R12.3; we expect it to be approximately unimodal, with
a major peak at high radiance representing the background
as the main population and a heavy lower tail representing
the cloud pixels with substantially lower radiance. Therefore,
cloud pixels can be masked out by finding the cutoff value that
well separates the lower tail and bulk of the R12.3 histogram.

The T-point algorithm [6] is an automatic image thresh-
olding method based on the pixel density function. It assumes
that the pixel density can be approximated by a unimodal his-
togram with a heavy upper tail. The histogram can be de-
composed into three parts: a steep rising slope, a steep de-
scending slope, and a slow descending slope. It then fits a
piece-wise linear regression to the steep descending and the
low descending slope. The optimal cutoff value is set equiv-
alent to the knot that minimizes the fitting error, such as the
`d-norm, d ∈ {1, 2}, of the regression. To see how the T-point
algorithm can be used to mask out cloud pixels, let r denote
a vector that stores the sorted negative pixel R12.3 of an m
by n image in ascending order. If cloud pixels contribute to
the lower tail of the R12.3 density, then they will contribute
to the higher tail of the −R12.3 density. Let r(i), i ∈ [1,mn]
be the −R12.3 of the i-th entry. If we assume the peak of
−R12.3 histogram has been identified at index p, then the op-
timal cutoff index t ∈ [p+ 1,mn− 1] is found by solving the
optimization problem

t = arg min


t∑

i=p

∣∣r(i) − r̂(i)
∣∣d +

mn∑
i=t

∣∣r(i) − r̂(i)
∣∣d (2)

where r̂ are the estimated −R12.3 by the fitted regression
lines. Following Equation (2), we will identify a pixel as wild-
fire only if its R12.3 is above −r(t). A visual illustration of
cloud masking using T-point thresholding is shown in Fig. 2.

2.3. Noise Reduction

The potential wildfire pixels in S can also contain noise,
which are often the results of a warm background that emits
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Fig. 2: Cloud masking based on T-point thresholding. The histogram of
negative pixel radiance, the fitted piecewise regression lines as well as the
optimal cutoff value are visualized.

terrestrial radiation and reflects solar radiation during the
daytime. A low-pass filter is suitable for attenuating high-
frequency noise while retaining the low-frequency signal. In
this paper, we apply Gaussian smoothing to S and classify a
pixel as a wildfire pixel only if its BT is above ∆K. We found
in our experiments that 5 ≤ ∆K ≤ 8 achieves a reasonable
balance between high sensitivity and specificity.

2.4. Grace Period

Our experimental results, presented in the next section,
demonstrate the effectiveness of the proposed post-processing
techniques across a broad setting. However, in case the false
alarm rate needs to be further reduced, one can take advan-
tage of the high temporal resolution of GOES-16 imagery and
employ a grace period technique. That is, nonzero entries in
St are identified as wildfire pixels only if they remain nonzero
in the subsequent sparse components St+1, ...,St+L where
the length of the grace period L can be set according to the
desired degree of sensitivity.

3. PRELIMINARY RESULTS

In this section, we provide some preliminary results of us-
ing the proposed algorithm to detect and monitor recent
California wildfires. It is important to mention that not all
wildfires are visible to GOES-16. This is because the in-
frared sensor equipped on GOES-16 has a resolution of 2
km, which can overlook fires with a burned size less than 4
km2 (approximately 988 acres). In this paper, we focus on
two visible ones: the Kincade fire and the Walker fire (In-
formation is available on https://www.fire.ca.gov/
incidents/2019/).

3.1. Kincade Fire

The Kincade fire started on October 23, 2019. It burned an
area of 77,758 acres before fully contained on November 6,
2019. Image data spanning the full 24-hour period of Oc-
tober 28 with a total of 288 frames were downloaded. The

fire was visible to GOES-16 in all frames. A 100 km × 100
km region in Northern California was cropped from the orig-
inal CONUS region for analysis. Besides the Kincade Fire, a
second cluster of pixels with persistently high BT difference
was spotted during the analysis; it was later confirmed to be
the Grizzly Island fire which was also active on October 28.
RPCA was applied to each frame to recover the corresponding
sparse components. The cloud pixels are masked out using
the T-point method; the noise pixels are removed using Gaus-
sian smoothing and fixed thresholding with ∆K = 6. Visu-
alized results of three frames uniformly sampled from the 24
hour period are shown in Fig. 3 (a)–(c). Our proposed method
detects both the Kincade fire and the Grizzly Island fire in all
three frames with low false alarm rates.

3.2. Walker Fire

The Walker fire started on September 4, 2019. It was initially
estimated to have a maximum size of 5 acres but later grew
significantly because of strong and erratic winds. It eventually
burned up to 54,612 acres before fully contained on Septem-
ber 25, 2019. Image data spanning the full 24-hour period
of September 5 were downloaded. The size of the Walker
fire was initially too small to be visible until the evening of
September 5. Therefore, the fire is detectable only in the
later half of the downloaded frames. A 100 km × 100 km
region in Northern California is again cropped as the train-
ing frame size, and wildfire detection is applied using the
same pipelines described in Section 3.1. Visualized results of
three frames uniformly sampled from the 24 hour period are
shown in Fig. 3 (d)–(f). The first frame was captured when
the Walker fire was still invisible and therefore no wildfire
pixel can be detected. In the remaining two frames where the
Walker Fire was visible to GOES-16, our algorithm success-
fully detects it in both frames. Furthermore, not a single false
alarm was raised even though large coverage of cloud exists
in all three frames.

As emphasized throughout the paper, the proposed method
can also be used to monitor formation or status change of
wildfire in a real-time image stream. To demonstrate the pro-
posed method’s effectiveness in capturing the Walker fire’s
size change on September 5, we monitor the 288 frames
assuming they are received in an online setting. The result
on a sample of six consecutive frames is shown in Fig. 3
(g)–(l). These frames cover a short time range in which
the Walker Fire transitioned from undetectable to detectable.
We see that actual wildfire pixels are identified as early as
8:23 pm. However, false alarms are detected at 8:13 pm,
8:18 pm and 8:28 pm. As mentioned in Section 2.4, the
specificity of the proposed detection algorithm can be fur-
ther improved by using a grace period technique. If we
apply a grace period of length 1 (L = 1) to the frames in
Fig. 3 (g)–(l), then potential fire pixels at 8:13 pm, 8:18 pm
and 8:28 pm will not be flagged as actual fire pixels since
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Fig. 3: Experimental Results. First row: frame-wise detection of the Kincade fire and Grizzly Island fire (a)–(c), and the Walker Fire (d)–(f). Second row:
monitoring the Walker fire online. In each figure, red dots represent correctly identified wildfire pixels and white crosses represent false alarms. In monitoring
results only, the (x, y) location of each false alarm, with (0, 0) representing the left top corner, is also shown.

they were not detected in the subsequent frames. As a re-
sult, we will be able to confirm our detection of the Walker
fire at 8:28 pm without making any false alarms. Accord-
ing to online report (https://www.plumasnews.com/
walker-fire-day-3-updates), the approximate time
when the size of Walker fire became detectable by GOES-16
is between 7:25 pm and 8:55 pm, which is reasonably close
to our result.

Our experiment can be improved by including compari-
son with existing methods that are also designed for GOES
imagery. One particular challenge is finding a suitable metric
for numerical comparison, since the limitation of GEOS im-
agery’s spatial resolution and absence of ground truth make
locating the exact wildfire coordinates and validating the de-
tection accuracy extremely difficult. Furthermore, compari-
son to methods designed for other satellite instruments (e.g.
MODIS) is also possible. We will propose these extension in
near future.

4. CONCLUSION

In this paper, we proposed an unsupervised wildfire detection
algorithm for GOES-16 images using RPCA. A novel cloud
masking approach based on T-point thresholding is also pro-
posed to reduce false alarms. Our algorithm adapts to the spa-
tial and temporal heterogeneity of satellite images, does not
require training on labeled images, and is computationally ef-
ficient enough for online monitoring. Experimental results
on varying scenarios demonstrated that our algorithm can de-
tect wildfires accurately and timely. It should be noted that
although this paper focused on GOES-16 imagery, our algo-
rithm can be applied to imagery obtained from other satellite

instruments after trivial modifications.

5. REFERENCES

[1] Panagiotis Barmpoutis, Periklis Papaioannou, Kosmas
Dimitropoulos, and Nikos Grammalidis, “A review on
early forest fire detection systems using optical remote
sensing,” Sensors, vol. 20, no. 22, pp. 6442, 2020.

[2] Geostationary Operational Environmental Satellites - R
Series, A collaborative NOAA & NASA program. Jul.
2012.

[3] W Xu, MJ Wooster, G Roberts, and P Freeborn, “New
GOES imager algorithms for cloud and active fire de-
tection and fire radiative power assessment across North,
South and Central America,” Remote Sensing of Environ-
ment, vol. 114, no. 9, pp. 1876–1895, 2010.

[4] Thanh Cong Phan and Thanh Tam Nguyen, “Remote
sensing meets deep learning: Exploiting spatio-temporal-
spectral satellite images for early wildfire detection,”
Tech. Rep., 2019.

[5] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John
Wright, “Robust principal component analysis?,” Journal
of the ACM (JACM), vol. 58, no. 3, pp. 1–37, 2011.

[6] Nicolas Coudray, Jean-Luc Buessler, and Jean-Philippe
Urban, “Robust threshold estimation for images with uni-
modal histograms,” Pattern Recognition Letters, vol. 31,
no. 9, pp. 1010–1019, 2010.

https://www.plumasnews.com/walker-fire-day-3-updates
https://www.plumasnews.com/walker-fire-day-3-updates

	 Introduction
	 Methods
	 Robust Principle Component Analysis
	 Cloud Masking Using T-point Thresholding
	 Noise Reduction
	 Grace Period

	 Preliminary Results
	 Kincade Fire
	 Walker Fire

	 Conclusion
	 References

